Data Science and Big Data Analytics

Data Science and Big Data Analytics

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use.

Author: EMC Education Services

Publisher: John Wiley & Sons

ISBN: 9781118876053

Category: Computers

Page: 432

View: 855

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available from the book’s page at Wiley which you can find on the Wiley site by searching for the ISBN 9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Categories: Computers

Analytics in a Big Data World

Analytics in a Big Data World

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of ...

Author: Bart Baesens

Publisher: John Wiley & Sons

ISBN: 9781118892701

Category: Business & Economics

Page: 256

View: 209

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.
Categories: Business & Economics

Big Data Analytics

Big Data Analytics

This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine ...

Author: Frank J. Ohlhorst

Publisher: John Wiley & Sons

ISBN: 9781118239049

Category: Business & Economics

Page: 176

View: 666

Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportunities. Reveals big data analytics as the next wave for businesses looking for competitive advantage Takes an in-depth look at the financial value of big data analytics Offers tools and best practices for working with big data Once the domain of large on-line retailers such as eBay and Amazon, big data is now accessible by businesses of all sizes and across industries. From how to mine the data your company collects, to the data that is available on the outside, Big Data Analytics shows how you can leverage big data into a key component in your business's growth strategy.
Categories: Business & Economics

Data Science and Big Data Analytics

Data Science and Big Data Analytics

This book presents conjectural advances in big data analysis, machine learning and computational intelligence, as well as their potential applications in scientific computing.

Author: Durgesh Kumar Mishra

Publisher: Springer

ISBN: 9811076405

Category: Computers

Page: 406

View: 435

This book presents conjectural advances in big data analysis, machine learning and computational intelligence, as well as their potential applications in scientific computing. It discusses major issues pertaining to big data analysis using computational intelligence techniques, and the conjectural elements are supported by simulation and modelling applications to help address real-world problems. An extensive bibliography is provided at the end of each chapter. Further, the main content is supplemented by a wealth of figures, graphs, and tables, offering a valuable guide for researchers in the field of big data analytics and computational intelligence.
Categories: Computers

Data Analytics and Big Data

Data Analytics and Big Data

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications.

Author: Soraya Sedkaoui

Publisher: John Wiley & Sons

ISBN: 9781786303264

Category: Computers

Page: 220

View: 318

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Categories: Computers

Big Data

Big Data

Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice.

Author: Bernard Marr

Publisher: John Wiley & Sons

ISBN: 9781118965832

Category: Business & Economics

Page: 256

View: 840

Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands
Categories: Business & Economics

Big Data in Practice

Big Data in Practice

In this book you find out succinctly how leading companies are getting real value from Big Data – highly recommended read!" —Arthur Lee, Vice President of Qlik Analytics at Qlik

Author: Bernard Marr

Publisher: John Wiley & Sons

ISBN: 9781119231387

Category: Business & Economics

Page: 320

View: 912

The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter
Categories: Business & Economics

Deep Learning Convergence to Big Data Analytics

Deep Learning  Convergence to Big Data Analytics

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data.

Author: Murad Khan

Publisher: Springer

ISBN: 9789811334597

Category: Computers

Page: 79

View: 565

This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning. Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses various machine learning techniques in concatenation with the deep learning paradigm to support high-end data processing, data classifications, and real-time data processing issues. The classification and presentation are kept quite simple to help the readers and students grasp the basics concepts of various deep learning paradigms and frameworks. It mainly focuses on theory rather than the mathematical background of the deep learning concepts. The book consists of 5 chapters, beginning with an introductory explanation of big data and deep learning techniques, followed by integration of big data and deep learning techniques and lastly the future directions.
Categories: Computers

Big Data Analytics with Spark

Big Data Analytics with Spark

So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Author: Mohammed Guller

Publisher: Apress

ISBN: 9781484209646

Category: Computers

Page: 277

View: 279

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.
Categories: Computers

People Analytics in the Era of Big Data

People Analytics in the Era of Big Data

This book provides actionable guidance on how to inject predictive analytics into every stage of the talent life cycle to drive optimal business performance, including how to: Build a scalable strategic workforce planning analytics function ...

Author: Jean Paul Isson

Publisher: John Wiley & Sons

ISBN: 9781119050780

Category: Business & Economics

Page: 416

View: 648

Apply predictive analytics throughout all stages of workforce management People Analytics in the Era of Big Data provides a blueprint for leveraging your talent pool through the use of data analytics. Written by the Global Vice President of Business Intelligence and Predictive Analytics at Monster Worldwide, this book is packed full of actionable insights to help you source, recruit, acquire, engage, retain, promote, and manage the exceptional talent your organization needs. With a unique approach that applies analytics to every stage of the hiring process and the entire workforce planning and management cycle, this informative guide provides the key perspective that brings analytics into HR in a truly useful way. You're already inundated with disparate employee data, so why not mine that data for insights that add value to your organization and strengthen your workforce? This book presents a practical framework for real-world talent analytics, backed by groundbreaking examples of workforce analytics in action across the U.S., Canada, Europe, Asia, and Australia. Leverage predictive analytics throughout the hiring process Utilize analytics techniques for more effective workforce management Learn how people analytics benefits organizations of all sizes in various industries Integrate analytics into HR practices seamlessly and thoroughly Corporate executives need fact-based insights into what will happen with their talent. Who should you hire? Who should you promote? Who are the top or bottom performers, and why? Who is at risk to quit, and why? Analytics can provide these answers, and give you insights based on quantifiable data instead of gut feeling and subjective assessment. People Analytics in the Era of Big Data is the essential guide to optimizing your workforce with the tools already at your disposal.
Categories: Business & Economics

Big Data Analytics with Hadoop 3

Big Data Analytics with Hadoop 3

What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more ...

Author: Sridhar Alla

Publisher: Packt Publishing Ltd

ISBN: 9781788624954

Category: Computers

Page: 482

View: 370

Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3’s powerful features, or you’re new to big data analytics. A basic understanding of the Java programming language is required.
Categories: Computers

Business Intelligence Strategy and Big Data Analytics

Business Intelligence Strategy and Big Data Analytics

More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both.

Author: Steve Williams

Publisher: Morgan Kaufmann

ISBN: 0128091983

Category: Computers

Page: 65

View: 719

Business Intelligence Strategy in the Big Data Analytics: A General Management Perspective explains how to deliver competitive advantages and substantial economic benefits by overcoming commonly-encountered barriers to success. It includes lessons learned from leading companies that provide practical ideas for how to use the many different forms of BI to meet key business objectives. Further, it clarifies how BI initiatives are really business initiatives that require business units to change how they use information and analysis to drive and improve business results, particularly profits. Business intelligence (BI) and business analytics are like a Swiss army knife-they can be used in many different ways to achieve many different business purposes. In working with leading companies in a wide range of industries to help them formulate and execute BI strategies and program plans, the author has seen firsthand that these successful companies struggle in two key areas: BI Strategy, which is understanding how they can leverage BI in core business functions such as marketing, sales, customer service, operations, distribution, supplier management, cost improvement, and financial management; and BI Program Execution, which is effectively aligning and executing the diverse workstreams that are critical for achieving a return on investment (ROI), including change management, business process and BI integration, and BI and data warehousing development. Provides ideas for improving the business performance of one's company or business functions Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans
Categories: Computers

Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things

The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security.

Author: Tausifa Jan Saleem

Publisher: John Wiley & Sons

ISBN: 9781119740759

Category: Mathematics

Page: 400

View: 613

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.
Categories: Mathematics

Practical Big Data Analytics

Practical Big Data Analytics

This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms.

Author: Nataraj Dasgupta

Publisher: Packt Publishing Ltd

ISBN: 9781783554409

Category: Computers

Page: 412

View: 138

Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.
Categories: Computers

Computational Intelligence and Big Data Analytics

Computational Intelligence and Big Data Analytics

This book highlights major issues related to big data analysis using computational intelligence techniques, mostly interdisciplinary in nature.

Author: Ch. Satyanarayana

Publisher: Springer

ISBN: 9811305439

Category: Computers

Page: 137

View: 935

This book highlights major issues related to big data analysis using computational intelligence techniques, mostly interdisciplinary in nature. It comprises chapters on computational intelligence technologies, such as neural networks and learning algorithms, evolutionary computation, fuzzy systems and other emerging techniques in data science and big data, ranging from methodologies, theory and algorithms for handling big data, to their applications in bioinformatics and related disciplines. The book describes the latest solutions, scientific results and methods in solving intriguing problems in the fields of big data analytics, intelligent agents and computational intelligence. It reflects the state of the art research in the field and novel applications of new processing techniques in computer science. This book is useful to both doctoral students and researchers from computer science and engineering fields and bioinformatics related domains.
Categories: Computers

Big Data Analytics

Big Data Analytics

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big ...

Author: Saumyadipta Pyne

Publisher: Springer

ISBN: 9788132236283

Category: Computers

Page: 276

View: 729

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
Categories: Computers

Big Data Analytics

Big Data Analytics

This volume focuses on Big Data Analytics. The contents of this book will be useful to researchers and students alike. This volume comprises the select proceedings of the annual convention of the Computer Society of India.

Author: V. B. Aggarwal

Publisher: Springer

ISBN: 9811066191

Category: Computers

Page: 766

View: 399

This volume comprises the select proceedings of the annual convention of the Computer Society of India. Divided into 10 topical volumes, the proceedings present papers on state-of-the-art research, surveys, and succinct reviews. The volumes cover diverse topics ranging from communications networks to big data analytics, and from system architecture to cyber security. This volume focuses on Big Data Analytics. The contents of this book will be useful to researchers and students alike.
Categories: Computers

Big Data Analytics Using Splunk

Big Data Analytics Using Splunk

A hands-on book showing how to process and derive business value from big data in real time. Examples in the book draw from social media sources such as Twitter (tweets) and Foursquare (check-ins).

Author: Peter Zadrozny

Publisher: Apress

ISBN: 9781430257615

Category: Computers

Page: 376

View: 115

A hands-on book showing how to process and derive business value from big data in real time. Examples in the book draw from social media sources such as Twitter (tweets) and Foursquare (check-ins). You also learn to draw from machine data, enabling you to analyze web server log files and patterns of user access in real time, as the access is occurring.
Categories: Computers

Big Data Analytics with Java

Big Data Analytics with Java

Java is the de facto language for major big data environments, including Hadoop. This book will teach you how to perform analytics on big data with production-friendly Java. This book basically divided into two sections.

Author: Rajat Mehta

Publisher: Packt Publishing Ltd

ISBN: 9781787282193

Category: Computers

Page: 418

View: 488

Learn the basics of analytics on big data using Java, machine learning and other big data tools About This Book Acquire real-world set of tools for building enterprise level data science applications Surpasses the barrier of other languages in data science and learn create useful object-oriented codes Extensive use of Java compliant big data tools like apache spark, Hadoop, etc. Who This Book Is For This book is for Java developers who are looking to perform data analysis in production environment. Those who wish to implement data analysis in their Big data applications will find this book helpful. What You Will Learn Start from simple analytic tasks on big data Get into more complex tasks with predictive analytics on big data using machine learning Learn real time analytic tasks Understand the concepts with examples and case studies Prepare and refine data for analysis Create charts in order to understand the data See various real-world datasets In Detail This book covers case studies such as sentiment analysis on a tweet dataset, recommendations on a movielens dataset, customer segmentation on an ecommerce dataset, and graph analysis on actual flights dataset. This book is an end-to-end guide to implement analytics on big data with Java. Java is the de facto language for major big data environments, including Hadoop. This book will teach you how to perform analytics on big data with production-friendly Java. This book basically divided into two sections. The first part is an introduction that will help the readers get acquainted with big data environments, whereas the second part will contain a hardcore discussion on all the concepts in analytics on big data. It will take you from data analysis and data visualization to the core concepts and advantages of machine learning, real-life usage of regression and classification using Naive Bayes, a deep discussion on the concepts of clustering,and a review of simple neural networks on big data using deepLearning4j or plain Java Spark code. This book is a must-have book for Java developers who want to start learning big data analytics and want to use it in the real world. Style and approach The approach of book is to deliver practical learning modules in manageable content. Each chapter is a self-contained unit of a concept in big data analytics. Book will step by step builds the competency in the area of big data analytics. Examples using real world case studies to give ideas of real applications and how to use the techniques mentioned. The examples and case studies will be shown using both theory and code.
Categories: Computers

Big Data Analytics and Knowledge Discovery

Big Data Analytics and Knowledge Discovery

This book constitutes the refereed proceedings of the 17th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2015, held in Valencia, Spain, September 2015.

Author: Sanjay Madria

Publisher: Springer

ISBN: 3319227289

Category: Computers

Page: 418

View: 400

This book constitutes the refereed proceedings of the 17th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2015, held in Valencia, Spain, September 2015. The 31 revised full papers presented were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections similarity measure and clustering; data mining; social computing; heterogeneos networks and data; data warehouses; stream processing; applications of big data analysis; and big data.
Categories: Computers