Geophysical Monitoring for Geologic Carbon Storage

Geophysical Monitoring for Geologic Carbon Storage

Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations.

Author: Lianjie Huang

Publisher: John Wiley & Sons

ISBN: 9781119156840

Category: Science

Page: 464

View: 895

Geophysical Monitoring for Geologic Carbon Storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Categories: Science

Geophysical Monitoring for Geologic Carbon Storage

Geophysical Monitoring for Geologic Carbon Storage

Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations.

Author: Lianjie Huang

Publisher: John Wiley & Sons

ISBN: 9781119156833

Category: Science

Page: 468

View: 708

Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Categories: Science

Carbon Capture and Sequestration

Carbon Capture and Sequestration

This book is the first systematic presentation of the technical, legal, and economic forces that must coalesce to realize carbon dioxide capture and geologic sequestration as a viable CO2 reduction strategy.

Author: Elizabeth Wilson

Publisher: Wiley-Blackwell

ISBN: 9780813802077

Category: Science

Page: 296

View: 990

This book is the first systematic presentation of the technical, legal, and economic forces that must coalesce to realize carbon dioxide capture and geologic sequestration as a viable CO2 reduction strategy. It synthesizes key engineering data and explains the technological and legal conditions that must be in place for carbon sequestration to be realized.
Categories: Science

Active Geophysical Monitoring

Active Geophysical Monitoring

Partnership, and Schlumberger Carbon Services for support of this research and permission to publish. ... Time-Lapse Airborne Gravity and Gravity Gradiometry Monitoring of CO2 Sequestration in Kevin Dome (M.S. thesis).

Author: Junzo Kasahara

Publisher: Elsevier

ISBN: 9780081027455

Category: Science

Page: 646

View: 663

Active Geophysical Monitoring, Second Edition, presents a key method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. Based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources, active geophysical monitoring can be applied to a variety of fields in geophysics, from exploration, to seismology and disaster mitigation. This revised edition presents the results of strategic systematic development and the application of new technologies. It demonstrates the impact of active monitoring on solid Earth geophysics, also delving into key topics, such as carbon capture and storage, geodesy, and new technological tools. This book is an essential for graduate students, researchers and practitioners across geophysics. Outlines the general concepts of active geophysical monitoring with powerful seismic vibrators and MHD generators Provides historical background for previous studies of seismically active zones Covers the theory and technology of active monitoring, including signal processing, data analysis, novel approaches to numerical modeling, and interpretation Discusses case histories and presents the results of worldwide, regional active monitoring experiments Thoroughly updated to include recent developments, such as updates relating to carbon capture and storage, microgravity, InSAR technologies, geodesy, reservoir monitoring, seismic reflection, and more
Categories: Science

Carbon Sequestration and Its Role in the Global Carbon Cycle

Carbon Sequestration and Its Role in the Global Carbon Cycle

The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological ...

Author: Brian J. McPherson

Publisher: John Wiley & Sons

ISBN: 9781118671795

Category: Science

Page: 359

View: 708

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage Predicting, monitoring, and verifying effectiveness of different forms of carbon storage Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.
Categories: Science

Geophysics and Geosequestration

Geophysics and Geosequestration

Underground Injection Control (UIC) Program Class VI Well Testing and Monitoring Guidance, Office of Water (4606 M), EPA 816R-13–001. www.epa.gov/safewater EPA. (2015). Subpart RR: Geologic sequestration of carbon dioxide, ...

Author: Thomas L. Davis

Publisher: Cambridge University Press

ISBN: 9781107137493

Category: Business & Economics

Page: 391

View: 173

An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.
Categories: Business & Economics

Geological Carbon Storage

Geological Carbon Storage

This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures.

Author: Stéphanie Vialle

Publisher: John Wiley & Sons

ISBN: 9781119118640

Category: Science

Page: 372

View: 564

Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. … A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland
Categories: Science

Multi Sensor Data Assimilation for Geological Carbon Storage Monitoring Design

Multi Sensor Data Assimilation for Geological Carbon Storage Monitoring Design

After successfully implementing the multi-sensor, rock physics-based data assimilation framework in an OSSE environment, I integrate the framework with full-waveform inversion (FWI) results from the CASSM dataset at Frio II. In this work, ...

Author: Shams Joon

Publisher:

ISBN: OCLC:1346413369

Category:

Page: 0

View: 415

Geological carbon storage (GCS) is a climate change mitigation strategy that provides an innovative solution to offset the rising atmospheric CO2 concentrations. This process involves the injection of CO2 into underground geological formations where it is permanently trapped, thereby avoiding CO2 to be emitted into the atmosphere. The tax credit for CO2 sequestration (IRC Code: 45Q) has incentivized the feasibility of such operations and GCS is gaining substantial investment interest. The potential for CO2 to leak out and negatively impact the overlying environment is a primary concern for such operations and has motivated the development of risk-based monitoring, verification, and accounting (MVA) protocols around the world for Class II and Class VI wells. Fluid flow models are effective tools to simulate complex physical processes such as CO2 sequestration at a storage site. The accuracy of these models relies on multiple model parameters and state variables that are calibrated to reproduce the changing reservoir state. Geophysical monitoring data from multiple sources are used to further calibrate reservoir simulations and improve model accuracy. However, both the reservoir model and geophysical measurements produce uncertain predictions due to the underlying process and measurement errors. Monitoring tools can be evaluated based on their sensitivity, spatiotemporal coverage, cost, and regulatory requirements. Wellbore sensors, such as pressure gauges, provide high temporal sampling of the subsurface but are spatially limited to around the wellbore. In contrast, surface seismics can survey large volumes of the reservoir with a coarse spatial resolution and are costly which limits how frequently they can be conducted. Furthermore, using these types of geophysical monitoring tools to estimate changes in petrophysical properties is always subject to uncertainty due to inevitable ambiguities incurred during data acquisition, processing, and interpretation. Combining multiple sources of measurements can help reduce prediction uncertainty; however, quantifying the improvement afforded by such composite systems can be a challenging task when the true reservoir characteristics are unknown. Quantifying the reduction in prediction error from different monitoring tools and combinations of monitoring tools can also be useful to evaluate the efficacy of a proposed monitoring design. From a monitoring design perspective, this research validates the applicability of combining seismic attributes derived from full-waveform inversion of continuous active-source seismic monitoring (CASSM) data with pressure-based monitoring measurements to improve model state predictions. The improvement afforded by combining these two different types of measurements is quantified by computing the reduction in prediction error in an ensemble-based data assimilation environment. The first goal of this research is to develop and test out an ensemble-based data assimilation framework that takes advantage of rock physics models and combines numerical simulations with geophysical observations to predict subsurface changes at GCS sites. This proposed joint seismic-pressure-petrophysical data assimilation framework uses continuous geophysical measurements, in the form of seismic velocity (Vp) and seismic attenuation quality factor (Qp) along with wellbore pressure monitoring data (Pwf), to predict changes in the reservoir model state which is represented by CO2 saturation and reservoir pressure distributions. One of the challenges of using seismic data is the non-unique relationship between CO2 fluid properties and seismic attributes which introduces ambiguity (multiple solutions) during inversion. Rock physics models can be used to forward model seismic attributes but due to the highly non-linear nature of these models and the multidimensionality of reservoir rock and fluid properties, standard linear models are rendered unusable for inversion purposes. Combining different types of measurements (seismic with pressure) helps further constrain this non-uniqueness and improves the forward-modeled estimates. These multi-sensor measurements are assimilated using an ensemble Kalman filter (EnKF) which propagates the model state and uncertainty forward using an ensemble of reservoir realization and relies on ensemble-based sample statistics of the model state and measurement error to calibrate estimates when new measurements are made available. One of the novelties of this workflow is that the forward operator of the EnKF is replaced with rock physics models (RPMs). The choice of rock physics model depends on the geological context, the rock and fluid properties, operational parameters of the seismic survey, and available seismic attributes. I use one particular RPM i.e., White's patchy gas saturation model that we use for demonstration purposes, but one could use this general framework to employ any one of a variety of RPMs. I conduct a series of observation system simulation experiments (OSSEs) to demonstrate the effectiveness of this joint data assimilation framework by evaluating different monitoring tools and combination of monitoring tools on three different models. The OSSEs are first conducted on a lab-scale "sandbox" model before being tested on field-scale reservoir models like the Frio II brine pilot, near Houston, Texas and the Cranfield Site in Mississippi. In general, including seismic attributes improves the prediction estimate of CO2 saturation while Pwf measurements improve pressure prediction results by calibrating the well constraints and improving model state forecasts. Jointly assimilating both seismic and pressure data produces the greatest reduction in prediction error and the high temporal resolution afforded by continuous seismic measurements allows for shorter assimilation windows. Reducing the assimilation frequency increases the prediction error which is observed when CO2 injection is halted and the post-injection assimilation time window is increased. This improvement afforded by jointly assimilating multi-sensor observations is consistently observed in all three synthetic case studies even when different data assimilation parameters are varied such as type, ensemble size, assimilation frequency etc. After successfully implementing the multi-sensor, rock physics-based data assimilation framework in an OSSE environment, I integrate the framework with full-waveform inversion (FWI) results from the CASSM dataset at Frio II. In this work, the CASSM-derived FWI seismic attributes and wellbore pressure monitoring data are jointly assimilated to predict CO2 plume movement and reservoir pressure changes over a 5-day injection period. A comprehensive comparison of using a multi-sensor approach as compared to just wellbore pressure sensors is carried out to conclude that the error reduction afforded by using multiple sensors is valuable both from a perspective of risk as well as cost. Lastly, the multi-sensor, rock physics-based data assimilation framework is reconfigured for additional operational applications at GCS sites like observation targeting. In particular, this modified workflow takes advantage of ensemble-based sensitivity analysis to evaluate how changing the placement location of monitoring wells influences the prediction uncertainty of model state variables. Furthermore, by evaluating the efficacy of pre-existing and/or limited monitoring tools and designs, one can identify regions of the reservoir with highest uncertainty and subsequently find optimal locations for drilling new monitoring wells. A series of OSSEs of the Frio II reservoir model are used to demonstrate the applicability of this observation targeting approach.
Categories:

Distributed Acoustic Sensing in Geophysics

Distributed Acoustic Sensing in Geophysics

... A general economic advantage of DAS installations in advantages for long-term monitoring has led to a high the near surface is the low cost of cable and cable instal- level of adoption for monitoring carbon sequestration lation.

Author: Yingping Li

Publisher: John Wiley & Sons

ISBN: 9781119521792

Category: Science

Page: 324

View: 430

A comprehensive handbook on state-of-the-art DAS technology and applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering. Distributed Acoustic Sensing in Geophysics: Methods and Applications presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: DAS concepts, principles, and measurements Comprehensive review of the historical development of DAS and related technologies DAS applications in hydrocarbon, geothermal, and mining industries DAS applications in seismology DAS applications in environmental and shallow geophysics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Categories: Science

Greenhouse Gases

Greenhouse Gases

Carbon Sequestration in Forest Ecosystems, Springer-Verlag. Lumley, D. (2001). Time-lapse seismic reservoir monitoring, Geophysics 66(1): 50–53. Lumley, D. & Behrens, R. (1998). Practical issues of 4d seismic reservoir monitoring: What ...

Author: Guoxiang Liu

Publisher: BoD – Books on Demand

ISBN: 9789535101925

Category: Technology & Engineering

Page: 352

View: 815

Understanding greenhouse gas capture, utilization, reduction, and storage is essential for solving issues such as global warming and climate change that result from greenhouse gas. Taking advantage of the authors' experience in greenhouse gases, this book discusses an overview of recently developed techniques, methods, and strategies: - Novel techniques and methods on greenhouse gas capture by physical adsorption and separation, chemical structural reconstruction, and biological utilization. - Systemic discussions on greenhouse gas reduction by policy conduction, mitigation strategies, and alternative energy sources. - A comprehensive review of geological storage monitoring technologies.
Categories: Technology & Engineering